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while in the case of waves generated by the waveguide. i. e, by the interval ( t1 , gz), 
we have E (Is) = - (6 -t 0,) exp (- %h-j,), b>O (9) 

This method makes possible a generalization to the case of a multi-extremal func- 

tion ~(2) . The case of decaying waves when ~(8) is monotonous, was studied pre- 

viously by V, Iu. Zavadskii. Under the quantum-mechanical treatment, such solutions 
describe quasi-stationary states 133. 
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Motion of gas behind a detonation wave expanding from the point of ignition 0 (coordi- 

nate origin) in a space filled with an explosive and with a cut-out hollow cone (axis of 
the cone : X = 0 , @ = 0 , 2s 0) , possesses a cylindrical symmetry and is self-similar . 
Consequently, 211 gas-dynamic magnitudes are functions of two independent variables 
5 = r i t, 11 I= z f t, r = Jfz”f (here $ denotes time). These functions satisfy the 

gas-dynamic equations with the corresponding boundary conditions, written in terms of 
these variables. Numerical methods of solution of partial differential equations (in two 
independent variables 5 and q) must however be used to obtain the above magnitudes. 

S. K. Godunov assumed that a region exists on the 5?r, -plane, where the flow coincides 
with the corresponding spherically symmetric flow obtained by Zel’dovich p]. The lat- 
ter flow occurs when a detonation wave expands from the origin 0 , the whole space being 
filled with an explosive. The motion of the gas is. in this case, spherically symmetric and 
self-similar, and determination of gas-dynamic functions reduces to the integration of a 
system of ordinary differential equations with the corresponding boundary conditions. 



Motion of a gas behind an exprndlng detonation wove 929 

Our present investigations confirm the above assumption and give a method of determi- 

nation of this region. In addition, asymptotics in the vicinity of singular points appearing 
in the solution, are given. 

1. A flow behind a detonation wave can be defined by a system of gas-dynamic equa- 

tions, an equation of state of the explosion products, and by initial and boundary condi- 
tions. Variables are chosen to suit the problem. The ilow in question possesses cylindri- 
cal symmetry, hence it is sufficient to consider the motion in a semi-plane passing 

through the a-axis of symmetry and bounded by it. The r-axis passes through the point 
0 and is perpendicular to the a -axis. Moreover, since the flow is isentropic, gas-dynamic 

equations in terms of independent (fi,r, z )-variables have the form 

while the equation of state of explosion products is P = xPx. 
Here p denotes the density, p the pressure, X is the ratio of specific heats.‘while U, 

and U, are the relevant velocity components. 
At the initial moment $ = 0 of ignition of gas at the point 0 , all space exterior to the 

empty cone (whose vertex is at the origin, a < 0 and the angle between the axis and the 
generator is equal to y) is filled with an immovable (U, = U, = 0) explosive of constant 

density po = H/X + 1 . Initial pressure p. = 0 . 
The resulting flow is bounded by the detonation wave front on one side and by a free 

surface (p = 0) on the other side. 

Detonation wave front satisfies the Jouguet condition, consequently the values assumed 

by the functions at the wave front should satisfy 

pr (D - UI) = * D, pl (D -.w)~ + PI = & D” 

WI = 0, D = ~1 + CI, c = $1 (K-1) (1.2) 

where 24 and w are the velocity components, which are, respectively, normal and tangen- 
da1 to the wave front, D is the wave velocity and c denotes the velocity of sound. Sub- 

script 1 denotes the values at the wave front. We can easily solve (1.2) to obtain 

or = 1, ur = 1, wr = 0, _D=X-+i. cr = x 

Thus we find that the wave velocity is constant at all points of the wave front. Conse- 
quently, the wave front appears, at the instant t and in the semi-plane ?‘Z(Fig. 1) as a 

Fig. 1 
8 

Fig. 2 
b 
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circular arc AC with the center at 0 and of radius Dt ; A and c are the points of 

intersection with the generator of the cone and with the Z-axis respectively. The prob- 

lem is self-similar, therefore we shall use self-similar variables 5 = rltand rj =8/6 . 
Taking U, , V, and c” as unknown functions, we can write (1.1) in the form 

(I 2) 

The arc AC of the circle z2 + TJ * =D2 corresponds to the wave front, on which we 

have I’). :.z E / I,. VI q : rj ! 0, rz := 9 

and we have exactly the same situation in the case of spherical symmetry. 

Since the products of explosion escape into empty space, a rarefaction wave is origi- 

nate.d centrally, with a vertex at the point A and terminating at the free boundary 

?J = q(5) originating at A, along whichp = 0 . The principal part of the flow in this 
rarefaction wave corresponds to the Prandtl-Meyer solution, hence we can change to 

polar coordinates CL and 6 with the origin at A 
5 = D sin y -+ a cos (v + J0FK), 11 _ - 11 cos y t a sin (y + I/h 6) (1.4) 

together with the corresponding velocities 

Z’/. ; D silly -1. oa cos (y -j- J&I?) - L’& sin (v +$%a) 
( 
h = 2) (1.5) 

(‘I 2 - D cos y -(- 11, sin (y -1 JXS) + us COS (y -1 VT61 

Here fi 6 is an angle between the ray emerging from A and the direction of the front 

at A , CY, is the radial distance from A , while va and 21s are the radial (a ray emerging 
from A at the angle fi 6) and transverse velocity components. Using these variables and 

functions we can write the initial gas-dynamic system in the form 

(ra -- 

(1.6) 

+ 
z‘~ ccl:: (7 ;- 1/&) - ug sin (r+ v/hS) + Dsin +r 

Y cos (T + VLS) + Ikin T 1 
= 0 

Equation of the wave front is 
cr=:!(x+ l)sin l/h6 

( 
O<S<Z 

2 v/h 1 
and at the front we have 

I’s = % cos .[/i;ls, “, z_ (z + “) sin 1/X6, c2 = x2 

2. We can represent the solution of our problem as a perturbation ofaspherically sym- 
metric motion of a strong rarefaction wave caused by expansion of the explosion products 
into an empty space, following the detonation wave. We can infer from general consi- 
derations that the boundary between the region of spherically symmetric solution and the 
perturbed medium, should consist of a characteristic together with a shock wave front, 
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should it occur. Obviously, the characteristic should originate at the point A (Fig. 1) , 

i.e. at the vertex of the rarefaction wave. The following differential equation defines 

this characteristic : d5 
fi&z(Dsin )/L6-y) 

d6= cy-ax (C= 1/4ai- (2.1) 

and the initial conditions are 

5 =(x + 1) when 6 = 0 

Here 6 is a self-similar variable of a spherically symmetric solution, while 

(a,,, .D cos ‘t/&,) is the point of intersection of the required integral curve with the sin- 

gular integral curve E/ = 0 . Self-similar functions U( 5) and C( 5) of the spherically 
symmetric soiution are defined by 

du 2uc2 
z= 5 I(5 - u)2 - c21 

(2.2) 

dc (x - 1) UC (5 - u) 

x = 5 [(u - 5)2 - @I 
12.3) 

together with initial conditions 

&=(x+1), u=l, c--x 

The initial point ( 6 = 0, 5 = K. + 1) is a singular point of (2.1). Curves c = K + 1 define 
the detonation wave front and g = 0 are the integrals of this equation which, however, 

are not at the same time characteristics (the relation along the characteristics does not 
hold) . Choice of a characteristic is accomplished with help of an initial asymptotic of 

the function c( 6) obtained from (2.1) under the assumption that its solutions which we 
seek, differ from c= X + 1 and 6 =X 

t; = x + i - e’/sl xh28’ (2.4) 

It was shown in P_] that in the case of spherical symmetry, a characteristic 5 = co 
exists which contains the quiescent region : when & s Go, U= 0 and 0 = 6, . This char- 
acteristic obviously satisfies (2.1). We find that when 6 varies from 0 to some value 
6, , C( 6) varies monotonously from X. +l to Co . 

Indeed, spherical symmetry implies that when the point A moves along the circle 
6 =D , the characteristic will rotate around 0 in the manner of an inflexible line. If 
6( 6) was not monotone, then the characteristics belonging to the same family would 
intersect, and this would contradict the self-similar solution of Zel’dovich. It was found 

by numerical integration that 

Yi;8r<1/art-arctg<0/D (5 (61) = 60) 

With 6 > 6 1 , the characteristic coincides, up to the moment of intersection with the 
2 -axis, with the arc of the circle c = co . Obviously, for each value of K there exists 

such a value of the apex angle yo that, when y> yo , then C > co between the pointA 

and the 7 -axis, i.e. the characteristic < = Co is not reached. Fig. 2a and b show sche- 
matically the distribution of the characteristic in the c’ll iplane relative to the angle y. 
We note that in U and 6 coordinates, equation of the characteristic becomes 

a = cp (b) = D sin fib - y (2.5) 

3. The problem is two-dimensional in the perturbed region, therefore in the following 

the gas-dynamic functions sought will be J’ = ca , Ua and U 6 . 
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In the region where the solution is spherically symmetric, pa. and us are related to 

the velocity U as follows: 

Values of the functions in the perturbed region along the characteristic determined 
previously should coincide with those given by the spherically symmetric solution. Con- 

sequently, from Formulas (2.3) to (2.5) and (3.1) it follows for small 6, that along this 
line the following asymptotic should be valid 

Solution of the system defining the principal term in the perturbed region near the 
point A (the Prandtl- Meyer flow) 

( 1 
“a, )/I;uao’ - V& = 0, 1 % 

i 
+ VBo’ + Vol@ + ) (x -:, pi to’=* (3.3) 

“6, 
--qg- lo’ + (x --I)fo v..++~; i I =* 

with initial conditions 
V 

Ilo = 0, us, = x, f = xa when 8 = 0 

has the form 

voO (6) = x @i Yin 6, vg, (6)- x cos6, .fo(6)=~~~0.5a6 (3.4) 

Obviously, the asymptotic (3.2) coincides with the asymptotic of (3.4) only within 
the first term. This means that, in the immediate vicinity of the characteristic when cz 
is of the order d3, the solution is somewhat different in structure. We shall use 6 and 
$ ‘c&E? as independent variables to find the asymptotic in this region and we shall 
write its expansion as 

vIc = Vl* (9) 6 + uo[* (9,) @ +. * '. vs=~~(9)i-v~t(9)6'+..- 

~=~o{~)~~l(~)~a+..' 

Inserting these functions into (1.6) and equating to zero the coefficients of the powers 
of 6 , we obtain two systems of ordinary differential equations. Initial values of these 

functions are obtained on a characteristic corresponding to 

64 
cp -_ % = a xh’l* 

from the asvmptotic (3.2). Thus the system and initial data denoted a subscript 

Q. -+(vaO- 
[ 

3va0f$) - V& + 
I 

6 fo’ = 0, 
In’ 

US,“&’ + x-_l - 6 

0, are 

(3.5) 

Then uo, = xv’% us, = x, f = x2 will be the solution of (3.5) with the relevant ini- 

tial conditions. For a function with a subscript 1 , the system and initial conditions are 
given by 

[ 

:I 
* 

-. 
Ir/i; (a,, - v,, ‘$\I) - V&l + K&l*lr, = 0 

2/t - 3f*‘$ .j- X (x - 1) [Zvg* - Svs*‘~l = - xz (x -t 1) 
(3.6) 
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%2 
=h*' 

211(11-- 2%V&,) 

%1/L 

qJ=qo, va,=Xh’:l 61(f;l)-;), ( vs,=xh g(xl;l) -$, ( il= -3x2 

The system (3.6) has a first integral 

f1 +%(% - 1) u&# = - ‘/,x2 (x + 1) + c$‘” (::.7, 

and initial conditions imply that u = 0 . 
First integral (3.7) and the substitution 

V 
aI = Pa’,,---4/x+1 (3.6) 

yield (3.6) in its reduced form 

dYI, 
dfl= 

4W1 (fl + x2) + (311f 5x3 [6x (x - 1) V,, + 2f1 v/i; + x2 (x + I) ‘)/&I 

12 I/h % (% - 1) fl (jr+%‘) - (% - 1) %* [6x (x-i) V,,+ 2fl J’-?i +x2 (x + 1) I/i;] 

(3.9) 

and the first integral (3.7). 

We see that the first Eq. of (3.9) can be studied separately. It has three singular 
points 

(1) 
( 

272 x Jfh sth% 
,+-;xa, v,,=~x-_l-‘- I 6 / 

(2) 
( 

x Jf/il 
f1= -%x2, v,,=- 6 i 

(3) ill = 0, v,, = - $j 

First of these points correspond to initial data. i.e. to the 
values of the functions on the characteristic , and it is a 
node. Let us select, out of all integral curves passing through 
1 , the one which passes through the second singular point 

(Fig. 3). At this point the functions have values correspond- 
ing to the second term of the asymptotic to the Prandtl- 
Meyer solution. Along this curve, value of $ decreases 

Fig. 3 monotonously from J’o to 0 . Indeed, it is contained within 

a region bounded by the segments of the isocline w con- 

necting points 1 and 2 , isocline 0 connecting 2 and 3 and an integral curve given by 

connecting points 1 and 3 . We can see in Fig. 3. that it cannot intersect any of these 

curves. (Incidentally, we observe that the integral curve connecting points 1 and 3 
corresponds to a spherically symmetric solution). 

Point 2 is a saddle point. The slope of the required integral curve is given, at this 

point. by dV’,, -i3 I/i; 
- = 3x(%-i)<o dll 

and is therefore negative along the whole segment of the curve. Since the integral curve 
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does not intersect the infinity isocline outside the points 1 and 2 , we have 

(x -- 1) X2 [$- V,, + & + -F) > s/r (jr +- x2) > 0 

Therefore, on the whole segment of the curve 1 x.2_, 

Point ‘2 has the corresponding value $ = 0 , and in the vicinity of 2 the following 

asymptotic is valid 
V ;= x pi-6 + - ; x I/h+ cp 

where c is a constant of integration. Returning to the point 1 corresponding to the 
direction of the characteristic !# = $, , we see that the integral curve (1.3) emerges from 

this point along a separate branch. Therefore the integral curve in question belongs to 
a bunch of curves with a common tangent, whose slope is 

ClV aI = - 7 I/K 

dil 5 x(x- 1) 

and, when $ is almost equal to $o , the asymptotic 

2U8 1 41 
“a = x V/ITS + -- 81(x+1) - 6 xh3/’ + 8 (x + 1) (3) lb”) J 6” m;- . ” 1 (3.11) 

c ( 

Iti 
.i) + 

21 
tib zxc x ~{- 

d 9 (x7-1) 
-- *(% + 1) I/p--w 

is valid. 

4, The characteristic AE and the values of gas-dynamic functions on it, were found 

in Section 2 with help of a spherically symmetric solution. We shall now have to con- 

firm that the segment belonging to AE is a boundary of the region of perturbation. A 
necessary condition for this is, that gas-dynamic functions must not experience a discon- 
tinuity on this segment. Let a. = cp ( 6) be the equation of A_&‘. We shall seek the asymp- 

totic of the solution in the perturbed region near the characteristic 

(11 -: d+,(b) +-0, (8) (g - 1) + a2 (S)(g - j)2 when 0 < 6 < as, & = o / ~(8) (4.1) 

where the equation g = 1 defines the characteristic and Q, = (v,, 4, f) and Q, (b) de- 
notes the. values which functions assume on the characteristic. 

To obtain equations defining the functions uQI (a), u5, (6) and fi (Qwe insert the expan 
sion (4.1) into the gas-dynamic system (1.6). expand the left-hand sides of these equa- 
tions in the powers of (g - 1) and equate to zero the coefficients of the zero and first 
power of (g - 1) . Zero power terms yield only two linearly independent equations. 
Coefficients of (g - 1) when only the terms containing the functions with a subscript 2 
are retained in the left-hand side, yield two linear equations for vat, va, and f2 and the 
determinant of this system is equal to zero. To make this system complete, we must 
equate to zero a linear combination of the right-hand sides dependent only on the 



Motion of a gas behind an expanding detonation wave 935 

functions with the subscript 1 and the relevant coefficients, thus obgining the required 
third equation. As a result we obtain the following set of equations defining vI,, t-8, and 

I,: df 
.2 1 _ 5(u-5) 0 

d6 ha (cy - ax) 1 
__h(u--)f 

c (cy _ ax) 11 + [F i’” + :; !?a: 2c’1) + 

+ 
c (a2 + 4@) (a.9 + cx) 

a (24 - 5)2 (cy - ax) 
_((x_*)~_~(:~~~~)_(x_-)~~+ f+i’,“I 11,. 

+ ++ g(uC-5) ( 
(x + 1) cos r - cp sin (r -5 1/1;6) 

(x + 1) sin r -+ cp cos (r + JQ6) a -+ ’ )I3 ‘I - 

-((x 1 I)[2 ( edu~~z +q) + ~~~~~~~~j~~~j + Cli ['(n2a~c2)~ + "y + CT+ 

ptpv (5 - ") 
as(ar+ .&)(a25-&2-(Y - I)u(a”+ c2))+ 

+ 
acp-x [(Cp + ?/) (6 - u)2 + c (0, - w) -c ;a!/ + c,r) q?] 

ax + 2cy 1 
+ 

t c2'p 1(x + 1) cm T-- cp sin (r + v/rTS)] h- + (x + l)!d<-rsin -r 

(x + 1) sin 7 -+ cp cos (7 $- dk6) 31 
(4 3’ .-I 

ax - c,~ 
V 
ar= (~_~)c~(~-u) f1-i-h +j,=- (X_u:)~;;_.)h+~y 

w 
k=,(ax+Zct/) 

4 

Notation used here is that adopted in Section 2. Functions appearing in the right-hand 

sides are obtained by integration of the system (2.1) and (2.2). From the asymptotic 

(3.11) it follows that when 41(O) = 0 and 6 are small 

f1= - 28127 x26? 

First Eq. of (4.2) is a Riccati equation ; a partial integral of this equation is well known, 
and it corresponds to the spherically symmetric solution 

Fr=-- 
2 (X - 1) uc*:/(p (6 - u) 

a25' 

which can, therefore, be reduced to a linear equation 

dz 

&? - - 
5 (U - 5) f/i; IL’~ r 6~2 C2 

i!a (CJ - ax) t-f 
-$-tm- ) .5:< I 4 - 5 (x -!- 1) 7 - 

’ a2 

3x(x + 1) c2 + (x - 2) I22 
-I 

a (cy - ax) 1 i_ + @?J 2 + i;(uc:c) ‘6 x 

x (x + 1) cos -r - cp sin (7 + dh8) 
1) 

h(u -05 
(x + 1) sin r + cp cos (7 + I/l;S) ’ - c(cY- a5) 

where 

(4.3) 

(4.4) 

When y eye , then a pointD( 6 = 6,) exists on AE 

u = 0, aa = (6 - u)’ - cs = 0 
. 

and in its vicinity we have 

a2 - u In U, a~VW5%Y)(~--4) 

Consequently, retaining the principal terms in (4.4), we obtain 

(4.5) 
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General integral of this equation is 
z = - h / yqJ + c (6 - BJ”, 

hence h 
.Z=--- 

?/(P ' 
+-Q when 6= br 

Thus, any integral curve of the first Eq, of (4.2) which can be taken up to the value 

of 6 = 6, except the one representing the partial integral (4.3) assumes, at 6 = & , a 

value 41 = -yplh, < 0 . Taking into account that near the point 6 = 0 

11 < F, (fl z - sV&P, Fl=: - VP&S) 

we conclude that a value 6, exists on the interval 0 < 6 < 6, , at whichs becomes 

infinite. 

From the system (4.2) it follows that, when 6 * 6, , then the functions with the sub- 

script 1 appearing in (4.1) increase like ( 6 - 6,r1 or. more accurately, 

%o= C 2a (QX - CY)’ (a!/ + 4 
(x + 1) JfKp (u - &y 1 8=8, 

(Formulas for @I1 are too unwieldy and shall not be given here). Similarly we can 

obtain equations for the functions with the subscript 2 . Their '-i~>?i?s, when 6 + 6, , 

will have the form @al 
(hz= (6-&a + (s?& (4.7) 

We note that the values of 4 

6 < 6, and (a -cp)/( 6 - 6,)’ 

;ID can only be obtained by integration. Thus, when 
is sufficiently small, then the following asymptotic is 

The above analysis is valid when the point [ 6, , Cp ( 6,) ] does not lie on the axis of 
symmetry. We find it can reach the axis of symmetry only when y> y. . More accurat? 

ely, for each H there exists a value yX > yo, such that when Y > yX then the point 

16, , cp( 6,)] falls on the axis of symmetry and the asymptotic will, at this point, be 
given by 

6. Since the point [ 6, , cp ( 63) ] is a singular point of our solution, we ougth to study 
the behavior of the gas-dynamic functions in the whole neighborhood of this point. 

Before all, we shall note that in the region where the asymptotic (4. B) is valid, the char- 
acteristics belonging to the same family as a = cp ( 6) ail converge at the point [do , 
Cp ( 6,) ] . Equation of this family of characteristics in terms of the variables a and 6, is 

GE = - nid f [v,* + (vor !?&:;g- DI(Da -a) (5.1) 

We can, within the indicated region, replace the functions entering this equation with 
their asymptotic representations given by (4.8). As a result we obtain 

d(a--cp) a--cp 
d6 =: b--b (5.2) 

i.e..a-cpmC(G - 6,), or in other words the characteristics pass through the point 
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( 63, cp ( 6,)) l Consequently, a shock wave is formed at this point and we cannot 

describe it without investigating the whole neigh~rh~ of this point in more detail. 

Formulas (4.3) can be rewritten thus 

(5.3) 

therefore it seems feasible to seek the solutions near this point in the farm (5.4) 

F = F3 (2) + (6 - 6,) Px (x) f (6 - &I)2 E18 (x) f f * . 
i 

x= ,p_~j, , F = (@,, qj* fl) 

The following three horn~e~o~ differential equations define the functions bearing 

the subscript 0 
I 

V a,-(P ----V v/Kc, Iti0 

(5.5) 

when x=.=0 

and all magnitudes appearing here without a subscript denote the values of corresponding 

functions of a spherica self-similar solution at 8 = 6, and a = 9 f ho) . Constants corre- 
sponding to initial data will constitute a solution of (5.5) and its determinant will then 

become zero. Functions with the subscript 1 will have a homogeneous system whose 

determinant will be identical with the previous one and again equal to zero. Initial data 
for this system are defined by the asymptotic (5.3). Obviously, the constants with initial 

data will satisfy this system, which consists of only two linearly independent equations. 
The remaining equation can be obtained by making use of the fact that when the sub- 
script is equal to t + I ($2 1) then nonhomogeneous equations are obtained and their 

determinant is equal to zero. Consequently there exists a linear relationship between the 
right-hand sides of these equations and a system defining the functions with the subscript 

$ supplemented by this linear relation, has a solution which coincides with (5.3). Thus, 

for functions with the subscrfpt 1 we have 

and a solution which approaches (5.3) as x-+0 , is given by 

(5.6) 

(5.7) 
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Functions with a subscript 2 can be obtained in a similar manner. Having found 

F,(X) , F~(x) and &()o we can obtain the asymptotic of the wave equation as welt 
as those of the values of functions on this wave near the point ( 6, , cp ( 6,)). LetF”(x, 6) 
denote the values of functions on the wave , and F(X, 6) before the wave and let the 

latter correspond to a spherically symmetric solution which can be written near the point 

6, , Cp ( 63,) in the form (,5.4). For example, 

(6-&q+. . . (5.8) 

Here the functions and their derivatives are taken on the characteristic a, = cp( 6) at 
the point 6 = 6, and Fl( 6,) is given by (4.3). We can write formulas for vo- and ‘:s- 

in the same manner. Wave equations shall be sought in the form 

x = xb + cb (6 - 6s) (5.9) 

and conditions on the shock wave will be 

P+ (D - u+) = p- (D - u-f, $2’ f p+ (r, - ii))% c r?J- + p- (n - U-)*, w* - w- (5.10) 

Denoting the angle between the tangent to the wave and the horizontal by fl , we 
obtain the normal U and tangential w velocities as follows: 

i, = - u, sin r(r + I/J 8) - /J] - vs coa RY + I/x 6) - 81 + (x + 1) cca (y - p, 

UJ = ‘$ cos I(? + 1/?; 6)- b] - us sin f(y + i’i; S)- @I - (.x + 1) sin (y - @) (5.11) 

Let a =a( 6) be the wave equation, then 

sin (7 + l/r& da /d6 + cos (r + frd) a vc 

tgP= COS(~+ Jft/K6)da/d6--sin(y+ l/r8)a J& 
(5.12) 

and consequently 
alGctg(y+ j&a-p) - -daldE) 

Using relations obtained from the equation of state p L= X$ 

f 
( 1 

l/X-l 
f 

() 

x/x--l 
P z.z 

iF P=x F 

we can write the second and third condition on thr wave as 

(5.13) 

dn l..$+ - 1, - 

a = v,+ _ v”,- a T/K, 
+ 

[v6+ - v6-12 + Iv,+ - ~~-12 = ‘G [(f, 
x ! fx-1) 

-1 x 1 
x [* _ ($ )--I’(- ] (5.14) 

Obviously, 6 = 63 + ( 6 - 6,). rherefore near ( 6, , Cp ( 6,)) the wave equation has, 
by (5.9). the following asymptotic 

a=rp(g,)+P’(65)(6--Bp)+[Xb+~rpl(&llt](8-UB+.-. 

da 
8 = q’ (f's) + [zxb + q” (6S)l (8 - &) (5.15) 

Formulas (5.4) along the wave are written as 

F = F, (Xb) + (b - 6,) F, (%b) + (6 - &da ~JFI’ (Xb) + Fs (%b)l + *km. (5.16) 



Motion of a gas behind an expanding detuution wave 939 

Inserting into (5.14) the asymptotics (5.8). f5,15) and (5.16) and equating the coef- 

ficients of like powers of (6 - &) , we obtain two equations for )(b and 6 . We note 
that Formulas (5.14) cease to be identities only after the substitution of three terms of 

obtain a wave of an infinitesimal 

~A~~~ 

Fig. 4 
above asymptotic method, To 

4 b do this, we would have to inte- 

grate partial differential equations numerically. We can expect, of course, that the wave 

front will never depart very far from the characteristic a = cp ( 6) . On the symmetry 
axis, the tangent to the shock wave front is horizontal. Indeed, the tangential velocity 
w is given in terms of Up and U, (see Section 1) as follows: 

w = t+. cos @ + vz sin fl, u = vr sin fi - v, cos @ (5.27) 

Since on the svmmetry axis we have U, = 0, conditions at the wave front at this point 

yie1d (Vz+ - u -) sin p - 0 z - , (P+ - p-) (+ - +) - ( uz+ - vz-y CO@ p (5.18) 

When the wave has a nonzero amplitude, then these conditions hold only, when sin@ = 0. 

Thus, the region of coincidence of our solution with the spherically symmetric solution 
is bounded (when y < yn ) by the segments of characteristics CE = CJJ ( 6) joining the points 
A and A ’ situated symmetrically with respect to the 7 -axis. with another symmetric 

pair of points 3 and 8’ ( 6, , C$J (6,) ) , by the shock wave front BB’ and by the detona- 
tion wave front AA ’ (Fig. 4a). 

N o te . In the approximation obtained, the line x c= f& / 4fno is a characteristic 
belonging to the same family as a = cp ( 6) . Perturbed area in the vicinity of the point 

[6a , $o(&)] is described in terms of the values of x varying in the direction 
O* - 0) +&, . If the characteristic x = fl@ I 4fao belongs to the perturbed area, then, 

in the area situated behind this characteristic the right-hand sides of theasymptotic For- 

mulas (5.7) become complex when (4h / fie ~p)x > 1 . This is apparently connected with 
the existence of a region of subsonic flow behind the wave and in this case solution can 

be obtained only by performing the integration of partial differential equations. 

WhenY>YK. the characteristics a = cp ( 6) emerging from A and A ’ meet on the 

‘lJ -axis at the point B at an angle > l7 (Fig. 4b). From the asymptotic equation (4.9) it 
follows that the characteristics belonging to the same family do not intersect, therefore 

no shock wave is formed at B . Using the same asymptotic (4.9) we shall seek a solution 
near the point B in the form 

F zz= r, + Fl (2) / 8 - 6, I’/* , I -= ;ss (519) 

where 6, is the value of 6 corresponding to the point .B. The following value corre- 
sponds to the q -axis 

I =lo= - v’rq (68) c (ZZ + va) 
x lax - cvl 

(5.20) 
1 -c 

Radial velocity U, is equal to zero on the ?‘) -axis, i. e, 

vIx cos (7 + l/h@ - u6 sin (r + j/K-5) + (x + 1) sin-r = 0 (5.21) 
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and this Is automatically fulfilled for the vafues of functions on the characteristic 

a = 9 ( 6) at the point 6 = $ ~fun~-~o~s with the subscript Of, For functions with the 
subscrfpt 1 ‘we require *at 

~&I (&I - !@a, (10) = 0 (5.X) 
and we have for these functions the following system: 

The characteristic CI, = Cp( 6) has a corresponding line a = 0 * Point (A 3 0, F= F,) is a 
singular point of the system (5.23) and dne can emerge from it along the asymptotic 
(4.91 which can be rewritten as follows : 

i-+0, Fz Fit -#- &.a !o W I(6 - W* (52:f 

System (5.23) has a first integral which, with the asymptotic (L-24) taken into account, 

can be written as (f - u / 5) b&Y -t- upI f fl/ (x - 1) = 0 (5.25) 

Asymptotic of the solution as .&? -$a, , is 

~*,zI-bp~A, o,*~-~~y~BfI--btrf-~+ 
a*%~4 

4% fKP@ f& -I- 9s) 
e--J4 

is also a singuIar point of (5,23] and corresponds to a characteristfc which belongs ta a 

family of which ot = C&J ( 6) is not a member, At this point, the functions are connected 

by the f~l~o~ng relations : th, (nrr + sCgj = Ss 10 (3cy - itGj f5.27) 

As&+~1 , we have the following asymptotic 

?‘,* z rlOl:,F + ,I1 (I - El), Vs, S Bgld -t- Bl (1 -II) (3.48) 

where /?x and & are connected by a single Iinear relation 
%* E.&j.Dx=. V 

2rrhq 
Prom (5. ‘22) it follows that B in (5.26) must be equal to zero. Taking into account 

that R varies in the direction 0 --f 03, - 00, + I, + ‘& we can show this by varying 

Al and & within the limits imposed by (5,29]. i.e. altowing a weak discontinuity on 
passing along the character&tic & =.&I l 

Problems touched upon in the present. paper were discussed with 3, K. fodnnov~ Mary 
of the formulas quoted were checked by I l f,+_ Kireeva who also. together with M. I. Kuran- 
cheva. performed numerical integration of equations on a computer. The author wishes 
to take this opportuniry to express his gratitude to all persons mentioned above. 
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In contrast to the solution of Garabedian fl] and to the solution constructed by the Berg- 

man method [2]. we derive ‘an exact general solution for the pair of functions cp and $ 

(cp is the velocity potential, $ is the stream function) of a system of partial differential 
equations describing the axisymmetrical flow of an incompressible ideal fluid. Our solu- 

tion depends on an arbitrary analytic function of a complex variable and is bounded on 
the axis of symmetry. 

The solutions constructed in [r] and p] increase without limit as the axis of symmetry 
is approached. 

Three-dimensional steady-state axisymmetrical flows of an incompressible fluid are 
described by the system of Eqs. P] 

89 
-z- 

1 W 8rp 
---, 1i)tp 

Y a!# a;j-‘y ax (I) 

Here the velocity potential cp and the stream function $ depend on only the two vari- 

ables x, E/ of the cylindrical coordinate system (g > 0 and X is parallel to the axis of 

symmetry). 
The integrals d system (1) will be sought in series form 

cp=fW+~ aa $. $=A+Bx+i i%(g) $: (‘1 
kd AI-0 

Here 19, Y are arbitrary barmonic functions which satisfy tbe Cauchy-Riemasn condi- 

tions aa, EW sot aur -- -E&j-? T- 3% a= 
(3) 

where S2, ak, 61~ (k = 0, 1, 2 , . ..) are the required functions of the single argument @. 
Let us construct the corresponding derivatives of (2). substitute them into (l), and 

recall Eqs. (3) and relations of the form 
a's+lap $TlY' ak+ly a"+'0 

ax&jic - -p-' zp ---gz (4) 


